Structural Features of a Polysaccharide from Centella asiatica

Xue Song WANG, Jin You DUAN, Ji Nian FANG*

Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031

Abstract: A polysaccharide, isolated from *Centella asiatica*, was a complicated arabinogalactan (AG), which contained a little α -(1 \rightarrow 4)-linked GalpA and α -(1 \rightarrow 2)-linked Rhap residues. Based on composition and methylation analyses, partial acid hydrolysis, periodate oxidation, NMR, ESI-MS experiments, it was shown to have a backbone of β -(1 \rightarrow 3)-linked D-Galp residues, with heavily branched side chains. Araf residues were linked to *O*-3 of (1 \rightarrow 3, 6)-linked Galp residues.

Keywords: Arabinogalactan, polysaccharide, Centella asiatica, structure.

Centella asiatica has been used as remedy for sodation, stabilization and against lepra, anabrosis¹ in the oriental countries. The low-molecular-weight constituents in *Centella asiatica* have been investigated¹. However, no polysaccharides have been reported. 1BI was the first polysaccharide isolated from *C. asiatica*, which had immunostimulating activity *in vitro*. In present study, we report the structural features of 1BI.

Experimental

Extraction, isolation and purification

Dried *C. asiatica* (19 kg, purchased from Shanghai Medicinal Materials Cooperation, code: 000201), previously defatted with 95% alcohol, was extracted with hot water for 4 h. The solution was extensively dialyzed against water (MWCO 5000 Da). The retentate was concentrated, precipitated with EtOH, washed by acetone and vacuum-dried at 40 °C to yield a black powder (JXCA, yield 2.1 %). A portion (8.0 g) of JXCA was fractionated on DEAE-cellulose column (CI type, Φ 5.0× 50 cm), eluted with H₂O, 0.1, 0.3, 0.5, 1.0 mol/L NaCl gradually. From the eluate of 0.1 mol/L NaCl, two fractions, named S1A and S1B (5.1 %, from JXCA), were obtained in turn. S1B was further isolated on DEAE-cellulose column, eluted with 0-0.3 mol/L gradient NaCl to give two fractions (1B-1 and 1B-2). Fraction 1B-1 was purified on a Sephacryl S-300 column (Φ 2.6× 90 cm) to give 1BI, which was homogeneous in HPGPC (Waters HPLC instrument system). The HPLC columns (UltrahydrogelTM 2000 and 500 columns) were pre-calibrated using standard T-dextran (T-4~T-700) and eluted with 0.003 mol/L NaOAc (0.5 mL/min) at 30±0.1°C.

^{*} E-mail: jnfang@mail.shcnc.ac.cn

Xue Song WANG et al.

Sugar composition and methylation analysis

Sugars were analyzed by GC after conversion of the hydrolysate into alditol acetates as described² previously. Methylation was performed according to the Needs method⁴, and the product was analyzed by GC-MS (Shimadzu QP-5050A, db-1 column), as described².

Reduction and partial acid hydrolysis

Reduction was carried out with 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide metho-*p*- toluenesulphonate (CMC) and NaBH₄ as described by Taylor and Conrad³. 1BI (70 mg) was dissolved in 0.05 mol/L TFA (20 mL) and kept at 80°C for 30 min. The resulting product was dialyzed and lyophilized to give a degraded polymer (1BI-P1, 62 mg). The dialysate (1BI-O1) was fractionated on a Sephadex G-10 column (Φ 1.6× 90 cm). 1BI-P1 (60 mg) was further hydrolyzed at 100 °C in 0.05 mol/L TFA (20 mL) for 20 min. 41.5 mg 1BI-P2 was obtained. 1BI-O2 was the dialysate.

Periodate oxidation and Smith degradation

1BI-P2 was dissolved in 0.02 mol/L NaIO₄ and kept at 5°C in the dark for 7 days. Consumption of NaIO₄ was measured by spectrophotometric method⁵. The resulting mixture was neutralized, reduced, hydrolyzed with 0.2 mol/L TFA at 40 °C for 24 h and dialyzed to give a degraded polymer (1BI-P2S), as described² previously.

	1BI	1BI-R ^a	1BI-P1	1BI-P1R ^a	1BI-P2	1BI-P2R ^a
Ara	1.0	1.0	1.0	1.0	—	_
Rha	0.3	0.3	0.4	0.4	1.0	1.0
Gal	2.1	2.4	2.9	3.3	7.3	8.2

 Table 1
 Composition analysis of 1BI and its derivatives^b (molar ratio)

^a presence of carboxyl-reduced derivative, ^brecorded on a Shimadzu-GC-14B apparatus with a 5 % OV225/AW-DMCS-Chromosorb W column (Φ 3 mm × 2.5 m).

Results and Discussion

1BI was homogeneous in HPGPC $[MW=1.9\times10^5, [\alpha]_D^{20} + 18.6 (c 0.296, H_2O)]$. No absorbance at 280 nm and a negative response to the Lowry experiment indicated 1BI contained no protein. Sugar composition analysis showed 1BI was composed of Ara, Rha, Gal and GalA in a molar ratio of 1.0:0.3:2.1:0.3 (**Table 1**). The *m*-hydroxylbiphenyl method⁶ showed 1BI contained 9.2 % galacturonic acid. In the ¹³C NMR spectrum, the signals were listed in **Table 3**, referring to the previous reports⁷⁻⁸. The residues molar ratio of 1BI and 1BI-R in **Table 1** suggested 1BI was an AG that contained Rhap & GalpA residues. With acid hydrolysis of 1BI, 32 % Araf residues were removed and 96 % Galp residues were kept in 1BI-P1 (MW=1.8×10⁵). 1BI-O1 contained 80 % (molar %) Ara. 1BI-P2 (MW=1.64×10⁵) was obtained with the further acid hydrolysis of 1BI-P1. In the hydrolysis, Araf residues were removed completely, while 84 % Galp residues were kept. 1BI-O2 contained 68 % Ara and 30 % Gal. All the results suggested 1BI, 1BI-P1 and 1BI-P2 had the same backbone consisting of Galp residues. Methylation analysis (**Table 2**)

188

showed the ratios of $(1\rightarrow 3, 6)$ -linked Galp residues decreased and $(1\rightarrow 6)$ -linked Galp residues increased after hydrolysis, indicating arabinosyl chains were linked to *O*-3 of $(1\rightarrow 3, 6)$ -linked Galp residues in 1BI.

Glycosyl	Deduced glycosyl		Molar ratio	
residue	linkage	1BI	1BI-R	1BI-P2R
Araf	t	3.0	3.0	_
	1,3	0.6	0.6	_
	1,5	1.6	1.6	_
	1,3,5	2.3	2.3	_
Rha <i>p</i>	t	0.5	0.6	0.2
	1,2	0.9	0.8	0.9
	1,2,4	1.0	1.0	1.0
Galp	t	4.2	4.3	4.1
	1,3	5.0	5.0	4.9
	1,6	2.7	2.7	3.3
	1,3,6	3.7	3.7	3.1
	1,4	_	2.5	2.0

 Table 2
 Methylation analyses of the derivatives of original and degraded polysaccharides

The disaccharide and trisaccharide fractions were obtained from 1BI-O1. The disaccharide fraction only contained Ara. The trisaccharide fraction was identified to mainly contain α -arabinotriose and α -Araf-(1 \rightarrow 5)- α -Araf-(1 \rightarrow 3)- β -Galp with ESI-MS and GC-MS experiments. 1BI contained a large amount of terminal residues and (1 \rightarrow 3, 6)-linked Galp residues (**Table 2**), indicating 1BI had a heavily branched side chains. 1BI-P2S still had (1 \rightarrow 3, 6)-linked Galp residues in methylation analysis (not be listed), indicating the following sequence existed in the branched chain of 1BI.

$$\begin{array}{ccc} & & & R = \rightarrow 3) - \beta - Galp - (1 \rightarrow \\ \downarrow & & & \\ 6 & & & \text{or} \rightarrow 3, 6) - \beta - Galp - (1 \rightarrow \\ \rightarrow 3) - \beta - Galp - (1 \rightarrow 3) - \beta - Galp - (1 \rightarrow \end{array}$$

Table 3 ¹³C NMR spectral data of acid polysaccharide 1BI in D₂O (CH₃OH in δ 49.5 ppm)*

	C-1	C-2	C-3	C-4	C-5	C-6
t-α-L-Araf	109.8	80.8	77.1	84.4	61.5	_
α -(1 \rightarrow 3)-L-Araf	107.9	80.8	82.6	84.4	61.5	_
α -(1 \rightarrow 3,5)-L-Araf	107.9	80.8	82.6	84.4	69.9	_
α -(1 \rightarrow 5)-L-Araf	107.9	80.8	77.1	84.4	69.9	_
t-α-L- Rhap	101.3	70.7	70.7	72.3	68.4	17.1
α -(1 \rightarrow 2)-L-Rhap	101.3	77.8	70.7	72.3	68.4	17.1
α -(1 \rightarrow 2,4)-L-Rhap	101.3	77.8	70.7	77.3	68.4	17.3
t-β-D-Galp	103.2	71.3	73.3	68.9	74.8	61.5
β -(1 \rightarrow 3)-D-Galp	104.8	71.3	81.8	68.9	75.2	61.5
β -(1 \rightarrow 3,6)-D-Galp	104.0	71.3	81.8	69.1	75.6	69.9
β -(1 \rightarrow 6)-D-Galp	104.5	71.3	73.8	69.1	75.6	69.9
α -(1 \rightarrow 4)-D-GalpA	99.1	70.7	70.6	79.8	75.6	176.1

*Assignment was made up by 2D 1 H- 1 H COSY, HMQC and HMBC experiments with a Brüker AM-400 NMR spectrometer

Xue Song WANG et al.

1BI-P2S showed three main peaks: $MW=4.6\times10^4$ (54 %, area %), 3.0×10^4 (27 %) and 2.1×10^4 (15 %) in HPGPC, which confirmed 1BI had heavily branched side chains. The ¹³C NMR spectrum of 1BI-P2 was simpler than the spectra of 1BI and 1BI-P1: the signals of Araf residues were lacking and the signals of $(1\rightarrow 6)$ -Galp residues increased. Those results confirmed Araf was linked to *O*-3 of Galp residues. In the ¹H NMR spectrum of 1BI, the anomeric signals of α -L-Araf and β -D-Galp occurred at 5.2 and 4.5 ppm, respectively.

In conclusion, 1BI had a backbone consisting of $(1\rightarrow3)$ -Galp residues and $(1\rightarrow3)$, 6)-Galp residues and contained a small amount of $(1\rightarrow4)$ -GalpA and $(1\rightarrow2)$ -Rhap residues. Its side chains contained arabinosyl chains which were linked to *O*-3 of $(1\rightarrow3, 6)$ -Galp residues, and galactosyl chains. The structure of 1BI was similar to that of the AG reported⁹, but the difference was the ratio of the side chains. 1BI and 1BI-P2 had immuno-activity *in vitro*.

References and Notes

- 1. Jiangsu New Medical College. *Dictionary of Chinese Materia Medica*, Shanghai Science and Technology Publishers, **1995**, p. 1873.
- 2. Q. Dong, S. W. Ding, X. Yang, J. N. Fang, Phytochemistry, 1999, 50, 81.
- 3. A. B. Taylor, H. E. Conrad, Biochemistry, 1972, 11, 1385.
- 4. P. W. Needs, R. R. Selvendran, Carbohydrate Research, 1993, 245, 1.
- 5. J. S. Dixon, D. Lipkin, Analysis Chemistry, 1954, 26, 1092.
- 6. N. Blumenkrantz, G. Asboe-Hansen, Analytical Biochemistry, 1973, 54, 484.
- 7. W. W. Cui, M. N. A. Eskin, C. G. Biliaderis, K. Marat., *Carbohydrate Research*, **1996**, 292, 173.
- 8. X. F. Bao, Z. Wang, J. N. Fang, X. Y. Li, Planta Medica, 2002, 68, 237.
- 9. P. Odonamzig, A. Ebringerova, E. Machova, J. Alfordi, *Carbohydrate Research*, **1994**, 252, 317

Received 3 January, 2003